
Dependence of the Nonhelical Dynamo on Shear: Numerical Exploration

of the Magnetic Shear-current and Stochastic-α Effects

A. Hankla1, C. Fendt1

1 Max Planck Institute for Astronomy, Heidelberg, Germany

Introduction

Accretion disks are ubiquitous in astrophysical systems, ranging in scales from propoplane-

tary disks around stars to disks around active galactic nuclei (AGN). When the disk is mostly

ionized and threaded by a weak magnetic field, the magnetorotational instability (MRI) leads

to radially-inward transport of angular momentum [1]. At its heart, the MRI is a shear-driven

instability: the importance of shear was therefore explored early on, exposing numerical and

analytical evidence for how various quantities scale as a function of shear [2].

However, some of these previous works may have cut out important physics due to numerical

constraints that limit the simulation regime to a locally Cartesian “shearing box". In particular,

a small vertical box size can artificially dampen a large-scale dynamo [3]. With the importance

of box size in mind, we recreate previous results in small boxes but in large boxes uncover an

abrupt (previously unreported) jump in how various quantities scale with shear that we suspect

to be connected to the presence/absence of a large-scale dynamo.

This study focuses on systems with no vertical density gradient (“unstratified"), whose ad-

ditional reflectional symmetry means that the dynamo presence cannot be explained by the

well-known α-effect. We explore two alternatives: the magnetic shear-current effect, an ana-

log to the kinematic shear-current effect fueled by a negative off-diagonal diffusivity [4], and

the stochastic-α effect, which drives the dynamo through fluctuations in the α parameter that

average to zero over an ensemble of many initial conditions [5]. Comparison of these two mod-

els is facilitated by explicitly calculating transport coefficients and dynamo growth rate after

adjusting the horizontal simulation domain size. We note that, unlike for the so-called “butter-

fly diagrams" of αΩ dynamos [6], there is currently no analytic derivation for the cycles of

the mean azimuthal magnetic field in an unstratified dynamo: we therefore provide preliminary

scalings to motivate future analytic research.

Although accretion disks are in general vertically stratified, the midplane region of the disk

is roughly unstratified. Therefore we can compare our results to the inner portion of previ-

ous studies’ stratified shearing boxes. Unstratified boxes have the added advantage of isolating

specifically nonhelical dynamo mechanisms.



Methods

The basis of this project is solving the ideal compressible single-fluid magnetohydrodynamic

(MHD) equations within the unstratified shearing box approximation. This is done by using the

ATHENA code with the CTU integrator, Roe Riemann solver, and the FARGO orbital advection

scheme [7]. The equations solved are:

∂ρ

∂ t
+∇ · (ρv) = 0,

∂B
∂ t
−∇× (v×B) = 0, (1)

∂ρv
∂ t

+∇ · (ρvv+T) =−2ρΩẑ×v+2qρΩ
2 xx̂, (2)

where T =
(
P+ B·B

8π

)
I− BB

4π
is the total stress tensor. As usual, ρ is mass density, v is the plasma

velocity, and B is the magnetic field. Here, the disk is rotating with angular frequency Ωẑ and

x̂ and ẑ are the radial and vertical directions, respectively. We focus on varying the shearing

parameter q, defined as q≡−d lnΩ/d lnr (Ω∼ r−q). Hence q= 3/2 corresponds to the familiar

Keplerian rotation profile. Non-Keplerian rotation can arise from e.g. strong magnetic pressure.

Simulations are run with an adiabatic equation of state with a box size of [Lx, Ly, Lz] =

[1, 4, 4]H, where H is the disk scale height, and resolution of 64, 128, and 256 zones, or 64,

32, and 64 zones/H, unless otherwise stated. The initial magnetic field is B = B0 sin(2πx/Lx)ẑ

(zero net flux) with B0 defined via the plasma beta parameter β = 8πP0/B2
0 = 4000. We use

shearing-periodic and periodic boundary conditions in the x and other dimensions, respectively.

To make contact with the magnetic shear-current model, we calculate the transport coeffi-

cients of mean field theory: after assuming scale separation between the large-scale mean field

and the small-scale turbulent field BTotal = B+b where the volume average (denoted by 〈·〉) of

the turbulent field 〈b〉= 0, the mean field portion of the induction equation becomes

∂B(z)
∂ t

= ∇×
[
v(z)×B(z)+E (z)− (qΩxŷ)×B(z)

]
(3)

where E = 〈v×b〉 is the mean electromotive force (EMF). Scale-separation arguments allow

Taylor-expanding E in terms of B: Ei = αi jB j−ηi j(∇×B) j where we have used Bz = 0 and

that the mean field depends only on the z-direction. To obtain the dynamo transport coefficients

α and η we employ the projection method, calculating E , B, and ∂zBi from simulation data,

computing 〈EiM〉 for each M ≡ (Bx,By,∂zBx,∂zBy), and solving Eq. 3’s resulting matrix equa-

tion in the least-squares sense at each time step [4]. We can also solve for the spatial profile of

the coefficients [3, 6]. We impose the constraints αxx = αyy, αyx = 0 = ηxy, and ηxx = ηyy to

reduce the correlations artificially introduced by assuming the magnetic field components are

only related via the equations solved, when they are in fact driven by the EMF through Eq. 3 [4].



Results
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Figure 1: The small box has been duplicated 4 times to have

the same aspect ratio. Dotted black line shows the actual sim-

ulated domain. Color bar is the same for middle and bottom.

We first seek to show that a large-

scale dynamo is indeed present.

Convincing evidence for a large-

scale magnetic field comes from the

mean azimuthal magnetic field as

a function of height and time. We

compare a tall box (Lz = 4) with

q > 1.2 (top), a small box (Lz = 1,

middle), and a tall box with q < 1.2

(bottom) in Fig. 1. The tall box with

dynamo action has patches of mag-

netic field that are on the order of H,

whereas the small box/low q do not.

Dynamo action also manifests in

volume-averaged quantities such as the ratio of mean to turbulent magnetic field energy (Fig. 2).

For small values of q, the mean energy is only about one-tenth of the turbulent field energy. The

jump at q ≈ 1.2 could indicate a dynamo switching on, since the mean and turbulent fields

contribute approximately equally to the total mean energy.
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Figure 2: Averaged from t = 50 orbits on. Dashed

black line is at zero. Error bars indicate one stan-

dard deviation.
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Figure 3: Averaged over t = 100−200 orbits, the

saturation period. Black dotted line is at zero. Er-

ror bars indicate one standard deviation.

To investigate whether this break is related to a potential dynamo mechanism rather than a

numerical artifact, we calculate the transport coefficients as a function of shear. We are partic-

ularly interested in the off-diagonal component ηyx, which, when negative, is the hallmark of



the magnetic shear-current effect. As seen in Fig. 3, this coefficient is indeed negative for all

simulations, abruptly jumps at the same q ≈ 1.2, and has the same behavior with box size as

in Fig. 2. As a check, the α coefficients average to zero. A toy model attempting to explain the

cycles of Fig. 1 through a sign change in ηyx when the azimuthal field reaches a critical value [8]

is not supported because the coefficient remains negative throughout our simulations. To guide

future explanation attempts, Fig. 4 presents azimuthal field cycle periods, calculated by fitting

the largest vertical mode at a given height [3].

The stochastic-α effect manifests through a change in dynamo growth rate when the horizon-

tal domain size is changed. For a single domain size, we find a scaling of growth rate γ consistent

with both the magnetic shear-current effect (γ ∼ q2) and stochastic-α effect(γ ∼ q) [4]. Upon

doubling the radial box length, we find a 20% drop in growth rate as opposed to the 50% pre-

dicted by a purely stochastic-α dynamo, indicating the presence of the stochastic-α effect while

also demonstrating that the effect does not account for the entirety of the dynamo.

Conclusions

We have presented preliminary evidence for the presence of the magnetic shear-current effect

in large, unstratified shearing boxes. Future work includes examining boxes with Lz ≈ 8 where

clearer cycle period and linear growth trends should emerge, running multiple initial conditions

to better understand the impact of the stochastic-α effect, and including explicit dissipation.
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Figure 4: Comparison of αΩ scaling relation pe-

riod T ∼ 1/q and linear and power-law fits [6].

All trials have Lz = 4 with 64 zones/H.
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